cyclen abgeklärt werden. Durch die Synthese der optisch aktiven $\Delta^{1.10b}$ -N-Methylhexahydro-benzo[f]chinolin-2-one und der entsprechenden Alkoholbasen liess sich auf Grund der bereits bekannten, relativen Konfiguration an den beiden Asymmetriezentren der Lysergsäuren, wiederum durch spektropolarimetrischen Vergleich, die absolute Konfiguration der vier isomeren Lysergsäuren, insbesondere am asymmetrischen Kohlenstoffatom C-5, ableiten.

Physikalisch-chemisches Laboratorium der pharmazeutischen Abteilung SANDOZ, Basel

292. Gas-chromatographische Charakterisierung organischer Verbindungen

Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen¹)²)

von A. Wehrli und E. Kováts

Herrn Dr. M. STOLL zum 60. Geburtstag gewidmet

(13. X. 59)

Die im Teil 1³) dieser Arbeit veröffentlichten Retentionsindices deuten auf das Bestehen einfacher Regeln hin, mit deren Hilfe gas-chromatographische Daten vorausgesagt werden können. Es konnte gezeigt werden, dass der für eine apolare stationäre Phase gültige Retentionsindex einer Verbindung mit ihrem Siedepunkt in einer einfachen Beziehung steht, so dass aus ihm dieser Index grob geschätzt werden kann. Ausserdem liefert der Vergleich gas-chromatographischer Daten, die sich für eine gegebene Verbindung an stationären Phasen merklich verschiedener Polarität bestimmen lassen, wertvolle Hinweise auf die mögliche Struktur der chromatographierten Verbindung. Allerdings lässt sich eine solche Deutung der experimentellen Daten nur auf dem Hintergrund eines ausgedehnten systematischen Tatsachenmaterials durchführen. Wir stellten uns deshalb die Aufgabe: 1. ein dieser Problemstellung adäquates Tatsachenmaterial zusammenzustellen, und 2. zu versuchen, in ihm eventuell allgemeinergültige Regelmässigkeiten aufzudecken.

Der Vergleich zweier an verschiedenen stationären Phasen bestimmten Retentionsvolumina als identifizierendes Kriterium wurde erstmals von JAMES⁴) vorgeschlagen. Er konnte zeigen, dass in einer graphischen Darstellung, in welcher die an Paraffinöl als stationäre Phase gemessenen Retentionsvolumina aliphatischer Amine gegen die an Polyäthylenglykol bestimmten aufgetragen werden, jeweils die Punkte der primären, sekundären oder tertiären Amine auf Geraden verschiedener Neigung fallen. Diese Regelmässigkeiten wurden als Folge der unterschiedlichen Fähigkeit dieser Amine zur Wasserstoffbrücken-Bildung mit dem Polyäthylenglykol erklärt. PIEROTTI, DEAL, DERR & PORTER⁵) sowie LEWIS, PATTON & KAYE⁶) zeigten, dass die analoge

¹) Teil 2: P. Tóth, E. Kugler & E. Kováts, Helv. 42, 2519 (1959).

²) Diese Publikation ist ein Teil der Dissertation von A. W. an der Eidg. Techn. Hochschule, Zürich.

³) E. Kovárs, Helv. 41, 1915 (1958).

4) A. T. JAMES, Biochem. J. 52, 242 (1952).

⁵) G. J. PIEROTTI, C. H. DEAL, E. L. DERR & P. E. PORTER, J. Amer. chem. Soc. 78, 2989 (1956).

⁶) J. S. LEWIS, A. W. PATTON & W. J. KAYE, Analyt. Chemistry 28, 370 (1956).

Darstellung der Logarithmen der Retentionsvolumina übersichtlicher ist, wodurch die Identifikation einer Verbindung erleichtert wird. DESTY & WHYMAN⁷) verwendeten die Logarithmen der relativen Retention (Standard an beiden stationären Phasen Pentan) anstelle der absoluten Grössen, wodurch diese Darstellung von den Kolonnenparametern (Durchmesser, Menge stationärer Phase usw.) unabhängig wurde. Ein ähnliches Vorgehen zur gas-chromatographischen Identifikation verschiedener Verbindungen wurde auch von Kovárs & HEILBRONNER⁸) angeregt.

In dieser Arbeit wird gezeigt, dass in Kenntnis der Strukturformel einer Verbindung der ihr zukommende Δ I-Wert (d. h. der Unterschied zwischen dem Retentionsindex der Verbindung an einer «polaren» (Polyäthylenglykol) und an einer «apolaren» (gesättigte Kohlenwasserstoffe) stationären Phase) in vielen Fällen aus additiven Inkrementen errechnet werden kann. Liegen für eine Verbindung mehrere mögliche Strukturformeln vor, so erlaubt in manchen Fällen der Vergleich zwischen berechneten und experimentellen Δ I-Werten einzelne der Formeln auszuschliessen. Auch besteht die Möglichkeit, den absoluten Wert des Retentionsindex an einer polaren stationären Phase durch Kombination von Siedepunktsregeln und Δ I-Inkrementen zu schätzen.

1. Experimentelle Resultate

Die auf den Seiten 2712 usw. tabellierten Retentionsindices wurden an zwei stationären Phasen bei drei äquidistanten Temperaturen bestimmt ((T-20); T; (T+20) °C). An die experimentellen Punkte wurde durch eine einfache Ausgleichsrechnung eine Gerade angeglichen. Der Fehler der Einzelbestimmung beträgt z. B. an der 95%-Sicherheitsschwelle für die Fettsäure-Ester (50 Verbindungen): \pm 1,8 I-Einheiten an der apolaren stationären Phase, \pm 2,8 I-Einheiten an der polaren Phase. Daraus errechnet sich der Fehler des Mittelwertes der drei Messungen (Index I bei der Temperatur T) auf \pm 1,1 (\pm 1,6) und der Fehler des Temperaturgangs ($10\partial I/\partial T$) auf \pm 0,6 (\pm 1,0) I-Einheiten/10 Grad. Bei einer Extrapolation über 100° (ausgehend von T) steigt der Fehler auf ca. \pm 8 (12) I-Einheiten. Der Fehler der Δ I-Werte und ihres Temperaturgangs ist etwa $\sqrt{2}$ mal grösser.

Die Retentionsindices wurden an den folgenden Kolonnenfüllungen bestimmt:

A: A piezon-L: Celite = 40:60 (Gewichtsverhältnis); Korngrösse des Trägers = 200–250 μ ;

P: Emulphor-O: Celite = 40:60 (Gewichtsverhältnis); Korngrösse des Trägers = 200-250 µ.

Apiezon-L ist ein Hochvakuumfett⁹) (Molekulargewicht ca. 1300¹⁰)), bestehend hauptsächlich aus Paraffinkohlenwasserstoffen.

Emulphor-O ist ein Polyäthylenglykol¹¹) (Molekulargewicht ca. 500¹⁰)), einseitig veräthert mit Octadecylalkohol.

Als Kolonnen wurden Pyrez-Glasrohre von 225 cm Länge und 0,6 cm lichter Weite verwendet. Die Temperatur der Säulen und der Wärmeleitfähigkeitszelle wurde mit Hilfe eines Aluminiumthermostaten auf \pm 0,15° konstant gehalten. Als Trägergas diente Helium. Die Gasgeschwindigkeit wurde am Kolonnenanfang mit Hilfe eines auf 25,0 \pm 0,3° thermostatierten Kugelbett-Strömungsmessers gemessen und auf ca. 60 ml/min (umgerechnet auf die mittleren Kolonnenbedingungen: Temperatur und Druck) eingestellt.

Die chromatographierte Substanzmenge betrug immer weniger als 200 µg pro Komponente. Alle Retentionsindices wurden auf eine gemeinsame Temperatur von 130° inter- bzw. extrapoliert. Ausserdem ist der Retentionsindex in den Tabellen meistens für eine zweite, den Arbeitsbedingungen entsprechende Temperatur (70° bzw. 190°) angegeben. Der Temperaturgang ist in der Zusammenstellung für 10° aufgeführt (Änderung des Retentionsindex bei einem Temperatur-

¹¹) BASF - AG, Ludwigshafen am Rhein.

⁷) D. H. DESTV & B. H. F. WHYMANN, Analyt. Chemistry 29, 320 (1957).

⁸⁾ E. Kováts & E. Heilbronner, Chimia 10, 288 (1956).

⁹) SHELL OIL COMPANY.

¹⁰) Kryoskopische Bestimmung durch Herrn W. MANSER.

anstieg von 10°:10 $\partial I/\partial T$). Die letzten Spalten der Tab. 1 enthalten die Differenz ΔI_{130} der Retentionsindices bei 130°, definiert durch die Beziehung:

$$\Delta I_{130} = I_{130}^{P} - I_{130}^{A} \tag{1}$$

sowie den Temperaturgang dieser Grösse pro 10° Temperaturdifferenz. Die verwendete Apparatur ist in Teil 2¹) beschrieben. Zur Ermittlung möglichst genauer Retentionsindices wurden während eines Arbeitstages alle Arbeitsbedingungen konstant gehalten. Die Chromatogramme wurden unter Verwendung der Mittelwerte zweier Eich-Chromatogramme (Gemisch von n-Paraffinen) ausgewertet, welche am Anfang und am Ende der Arbeitsperiode aufgenommen wurden.

2. Inkremente

Der Retentionsindex einer Verbindung Y ist definiert durch die Beziehung (2):

$$I = 200 \quad \frac{\log r(Y:nP_z)}{\log r(nP(z+2):nP_z)} + 100 z , \qquad (2)$$

in welcher $r(Y:nP_z)$ die relative Retention¹²) der Substanz Y und $r(nP_{(z+2)}:nP_z)$ die relative Retention des unverzweigten Paraffinkohlenwasserstoffes mit (z + 2) Kohlenstoffatomen bedeuten. Beide relativen Retentionen werden auf den unverzweigten Paraffinkohlenwasserstoff $C_zH_{2\,z+2}$ als Standard bezogen, wobei z eine gerade Zahl ist. Dies bedeutet, dass der Retentionsindex I der Substanz Y durch eine einfache logarithmische Interpolation zwischen den Retentionsindices der zwei Standardverbindungen $C_zH_{2\,z+2}$ (nP_z) und $C_{z+2}H_{2\,z+4}$ $(nP_{(z+2)})$ errechnet wird. Der «*peak*» der Substanz Y muss zwischen denen der zwei aus der homologen Reihe ausgewählten Standardverbindungen liegen. Die Retentionsindices der geradzahligen n-Paraffine werden für jede Temperatur und für jede stationäre Phase als 100 z definiert (Åthan = 200, Butan = 400, Hexan = 600 usw.).

Die Retentionsindices von Substanzen, die an einer apolaren stationären Phase chromatographiert werden, und ihr Zusammenhang mit dem Siedepunkt dieser Verbindungen wurden in Teil 1 besprochen. In den folgenden Tabellen sind Inkremente zur Berechnung von ΔI_{130} -Werten und deren Temperaturgang (für 10°) zusammengestellt. Zu ihrer Ermittlung wurden die im Teil 1 und in dieser Arbeit veröffentlichten Daten benützt. Die Inkremente sind für die drei Klassen der aliphatischen, alicyclischen und aromatischen Verbindungen gesondert aufgeführt.

Es wird versucht, den Δ I-Wert einer Verbindung so zu ermitteln, als ob er durch additive Einflüsse ausgezeichneter Molekelbezirke hervorgerufen würde. Den einzelnen Bezirken – die wir als «Haftzone» der Molekel bezeichnen wollen – werden Inkremente zugeordnet. Diese bestehen einerseits aus einem der Haftzone zugeordneten Grundwert und anderseits aus für die intramolekulare Umgebung dieser Zone charakteristischen Korrekturen. Der Name «Haftzone» will ausdrücken, dass ein solcher Molekelbezirk in einer nicht-apolaren stationären Phase stärker haftet als in einer «apolaren» stationären Phase.

21. Aliphatische Verbindungen

211. Tabelle der Inkremente für ΔI_{130} -Werte aliphatischer Verbindungen. Die aufgeführten Inkremente gelten für 130°. Die kursiv gedruckten Zahlen bedeuten ihren Temperaturgang für einen Temperaturanstieg von 10°.

¹²) Die relative Retention ist das Verhältnis zweier Retentionsdaten (Retentionsvolumina, Retentionszeiten usw.), welche unter identischen Versuchsbedingungen bestimmt wurden. Wir verwenden die folgende Symbolik: r(1:2|X) bedeutet die relative Retention der Substanz 1, bezogen auf die Standard-Verbindung 2 an der stationären Phase X.

etentionsindices
ž
÷

10	0'0	0,0	0.0	0.2	0,2	0,6	2,0	1,4	1,3	2,1	0,7	1,1	0,8	0,2	0,3	0,3	0,6	0,1	0,1	0,7	0,8	2,4	2,5	0,3	0,7	1,6	2,6	2,9	2,9
10					- -	÷	+	+	+	+	+	+	+	+	+	+	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	1	1	÷		+	+	+	+
ΔI_{130}	00			1		-1	47	44	42	44	45	41	4	33	34	86	2	78	17	79	63	358	355	258	241	234	232	233	231
$10 \frac{\partial I^P}{\partial T}$	0'0	0,0		+ 0.3	+ 0.5	+ 1,3	+1,0	+ 0,8	+ 0,8	+1,5	+ 0,5	+ 0,8	+0,7	+ 0,5	+0'0	+ 0,7	+ 0,6	+0,8	+ 0,5	+ 0,2	- 1,3	- 1,8	~ 1,9	+ 0,9	+1,2	+2,6	+3,8	+4,0	+ 3,9
190		000	1100																938	1132		1149	1330				1001	1103	1202
130	500	00/	1100	570	570	693	526	627	726	827	544	489	570	592	594	599	578	742	934	1131	630	1160	1341	708	792	878	619	1079	1178
70	500	00/		568	567	685	520	622	721	818	541	484	566	590	590	595	574	737			638			702	784	862			
Temperatur- Bereich	50-130	70-150	150-210	70-110	70-110	70-110	70-110	70-110	70-110	70-110	50- 90	<u> 5</u> 0– 90	50- 90	70-110	70-110	70-110	50- 90	90-130	110 - 150	130-170	70-110	130-170	170-210	70-110	70-110	110-150	110 - 150	150-190	150-190
$10 \frac{\partial I^A}{\partial T}$	0'0	0,0		c 0 +	+ 0.3	+ 0,6	-1,0	- 0,6	- 0,5	- 0,6	- 0,2	- 0,3	- 0,1	+ 0,3	+ 0,3	+ 0,4	+1,2	+ 0,7	+ 0,6	+ 0,9	- 0,5	+ 0,6	+ 0'0	+ 0,6	+ 0'0	+1,0	+ 0,9	+1,2	+1,0
										<u> </u>									2	7			~					~	~
19(00611							522									86	105		806	996				752	853	953
130 19(500	200	006 0061	571	572	694	479	583	684	783 779	499	448	526	559	560	514	484	664	858 85	1052 1053	568	802 806	986 986	450	551	644	747 752	846 853	947 953
70 130 190	500 500	700 700	900 900	570 571	570 572	690 694	485 479	587 583	687 684	783 779	500 499	450 448	527 526	557 559	558 560	511 514	476 484	661 664	858 86	1052 1053	570 568	802 806	986 990	447 450	547 551	638 644	747 752	846 853	947 953
Temperatur- Bereich 70 130 19(50-150 500 500	70-150 700 700	115-010 1100 1100 1100 1100 1100		70-110 570 572	70-110 690 694	50-90 485 479	70-110 587 583	90–130 687 684	110–150 783 779	50-90 500 499	50-90 450 448	50-90 527 526	70-110 557 559	70–110 558 560	70–110 511 514	50-90 476 484	90-130 661 664	110-150 858 86	150–190 1052 1053	70-110 570 568	130-170 802 806	150-190 986 990	70-110 447 450	90-130 547 551	90-130 638 644	110–150 747 752	130-170 846 853	150-190 953

2712

(Fortsetzung)
Retentionsindices

$10 \frac{\partial AI}{\partial T}$	+ 2,8			+1,1	+ 0,5	+2,1	+ 2,7	+ 1,1	+ 2,2	+ 1,7	- 1,1	- 0,4	+ 0,8	+1,8	+0,3	+1,0	- 0,7	+ 0,2	+ 1,7	+ 2,9	+ 2,8	- 0,3	- 0,4	+ 1,1	+ 1,5	+1,6	+ 0,4	+1,7	+ 1,1
ΔI_{130}	230	_		233	221	214	211	210	203	205	223	218	238	211	183	174	406	371	351	345	342	480	402	378	358	342	274	260	241
$10 \frac{\partial I^P}{\partial T}$	+ 4,0			+1,8	+1,3	+ 3,0	+ 3,5	+1,9	+ 2,9	+ 2,7	+ 2,5	+2,6	+1,6	+ 3,0	+1,5	+ 2,2	+ 0,6	+ 2,1	+ 3,5	+3,4	+ 3,9	+ 0,5	+ 0,8	+ 2,5	+ 3,0	+3,2	-1,0	- 0,6	+1,7
190	1301				973	1078	1180	1055	1256	1452					948	1121			066	1086	1187		266	1080	1167	1257			
130	1277			884	996	1061	1159	1043	1238	1436	849	923	1050	883	939	1108	853	892	970	1066	1164	967	992	1064	1149	1237	637	714	814
70				873							834	908		865			849	880				964					 643	717	804
Temperatur- Bereich	150-190			90-130	110 - 150	130-170	150-190	130-170	150-190	170-210	90130	90-130	110-150	90–130	110-150	130–170	90130	110150	110150	130–170	130-170	110 - 150	130 170	130-170	130–170	150-190	90130	90–130	90-130
$10 \frac{\partial I^A}{\partial T}$	+1,2	+1,0	+1,5	+ 0,7	+ 0,8	+ 0,9	+ 0,8	+ 0,8	+ 0,7	+1,0	+ 3,6	+ 2,9	+ 0,8	+1,2	+1,2	+1,2	+1,3	+1,9	+1,8	+ 0,5	+1,1	+ 0,8	+1,2	+1,4	+1,5	+1,6	- 1,4	- 2,3	- c ,0 +
190	1055	1154	1256		751	852	952	838	1039	1237						943					829		_		800	905			
130	147	œ	47	551	746	847	948	833	1035	1231	627	706	812	672	756	935	447	524	619	721	822	487	590	686	161	396	362	455	574
70	10	114	12							<u> </u>																			
L	10	114	12	647						<u> </u>	605	688	807	665	749		439	510				483	583	677			370	468	570
Temperatur- Bereich	170-210 10	170-210 114	170-210 124	90-130 647 6	130-170	130-170	150-190	150-190	150-190	170-210	70-110 605	70-110 688	110-150 807	90-130 665	70-130 749	130-170	50-90 439	70-110 510	110-150	110-150	110-150	50-90 483	90-130 583	90-130 677	110-150	130-170	 50-90 370	50~ 90 468	50-90 570

Volumen XLII, Fasciculus VII (1959) - No. 292

2713

21	Temperatur- Bereich	70	130	190	$10 \frac{\partial I^A}{\partial T}$	Temperatur- Bereich	70	130	190	$10 \frac{\partial I^P}{\partial T}$	ΔI_{130}	$10 \frac{\partial dI}{\partial T}$
	50- 90	532	525		- 1,1	70-110	748	754		+ 1,1	229	+ 2,2
	90-130	679	680		+ 0,2	90-130	910	913		+ 0,5	233	+ 0,2
• • • •	70-110	632	631		- 0,2	90–130	850	855		+ 0,8	224	+1,1
(I) · · · · (I)	70-110	639	642		+ 0,5	90-130	862	868		+ 0,9	225	+ 0,3
2)	70-110	585	589		+ 0,7	90-130	790	795		+ 0,9	206	+ 0,2
•	110–150	781	787		+1,0	130-170		1014	1017	+ 0,4	233	- 0,6
	90–130	739	748		+1,4	110-150		975	986	+1,8	228	+ 0,4
:u												
•	50- 90	475	468		-1,1	90-130	719	717		- 0,3	249	+ 0,8
	50- 90	557	547		-1,6	90-130	784	779		- 0,8	232	+ 0,8
• • • •	50- 90	654	648		- 1,1	110-150	867	874		+1,1	227	+ 2,2
• • • •	50- 90	596	588		- 1,1	90-130	793	798		+ 0,9	210	+ 2,0
	110-150	757	755		- 0,3	130-170		971	981	+1,7	217	+ 2,0
	70-110	697	692		- 0,9	110-150		895		+ 0,8	203	+ 1,7
(1) (1)	90-130	711	713		+ 0,4	110-150		921		+0,4	209	+ 0,0
(2)	70-110	640	636		- 0,6	90–130	817	820		+0,5	184	+ 1,1
• • • •	130-170		855	856	+ 0,2	130-170		1072	1084	+2,0	217	+1,8
1) (1	110-150		819	-	+ 0,6	130-170		1028	1039	+1,9	209	+1,3
:uov												
• • • •	50- 90	578	572		- 1,0	90–130	800	802		+ 0,2	229	+ 1,2
•	50- 90	654	645		-1,4	90–130	859	859		0'0	214	+1,4
• • • • • •	90-130	752	751		- 0,8	110-150		951		+1,2	207	+2,0
• • • •	90-130	685	683		- 0,3	90–130	872	876		+ 0,7	192	+1,0
• • • •	130–170		851	853	+0,4	130-170		1047	1058	+1,8	197	+1,4
• • • • • • • •	110–150		784		- 0,5	130–170		016	973	+ 0,5	186	+1,0
(1) (1)	110-150		808		+ 0,3	130-170		666	1002	+ 0,5	190	+ 0,2
(2)	90-130	727	725		- 0,2	90-130	886	889		+ 0,5	163	+ 0,7
•	150-190		949	950	+ 0,1	150-190		1148	1156	+1,3	199	+1,2
•••••	130170		914	918	+ 0,6	150190		1104	1115	+1,9	190	+1,3
on:												
•	50 90	699	665		- 0,7	90-130	882	885		+ 0,5	220	+1,2

Retentionsindices (Fortsetzung)

2714

HELVETICA CHIMICA ACTA

(Fortsetzung)
Retentionsindices

$\frac{\partial \Delta I}{\partial T}$	+1,8	+0,3 +1,3	+ 1,7	+ 1,7	+1,6	+1,3	+ 2,1	+ 0,5		+ 0,9	+ 0,8	+ 0,8	+1,1	+1,5	+1,5	+ 0,5	+1,5	+ 0,7	+ 0,5	+1,2	+1,0	+1,4	+1,4	+1,7	+ 1,2	+1,1	+ 0,8	+ 0,2	+ 0,7	+ 1,2
ΔI_{130}	206	181 185	188	174	181	157	187	183		215	188	184	174	172	158	167	140	176	172	40	34	37	41	44	47	46	47	40	50	33
$10 \frac{\partial I^P}{\partial T}$	+1,2	6,0+	+2,5	+1,2	+1,6	+1,3	+2,1	+1,3		- 0,1	- 0,1	+0,1	+0,1	+ 2,2	+1,1	+ 0,7	+1,3	+1,8	+1,5	+3,8	+ 5,0	+ 6,0	+6,7	+ 8,2	+ 7,9	+ 8,1	+ 8,5	+ 7,1	+ 7,9	+3,9
190		1039	1142	1059	1090	619	1239	1193						1079	993	1025	910	1175	1135			919	1060	1186	1293	1387	1482	1207	1267	
130	9 4 6	1034 959	1127	1052	1080	971	1226	1185		825	881	974	897	1065	987	1021	902	1164	1126	627	734	883	1020	1137	1245	1338	1431	1165	1219	684
70		953								826										604	704									661
Temperatur- Bereich	110-150	90-130 90-130	150-190	130-170	130-170	130-170	150-190	170-210		90-130	90130	90–130	90-130	130-170	130-170	130-170	130-170	170-210	170-210	70-110	90–130	110-150	130-170	150-190	150-190	150-190	150-190	150-190	150-190	70–110
$10 \frac{\partial I^{A}}{\partial T}$	- 0,6	- 0,4 - 0,3	- 0,4	-0,5	0,0	0'0	0'0	6'0+	-	-1,0	6'0 -	- 0,7	- 1,0	+ 0,7	- 0,4	+ 0,2	- 0,2	+1,2	+1,0	+ 2,7	+4,0	+4,6	+ 5,3	+ 6,5	+ 6,7	+ 7,0	+ 7,7	+6,9+	+ 7,3	+2,7
190			937	874	006		1039	1007						898	827	856		996	960			874	1011	1132	1238	1334	1430	1166	1213	
130	738	840 774	940	877	900	815	1039	1002		610	693	790	723	894	829	855	763	989	954	587	700	846	979	1093	1198	1292	1384	1125	1170	651
70	741	- 776								616	669		729							571	676									635
Temperatur- Bereich	90-130	90-130 90-130	130-170	130-170	150-190	110–150	150-190	150–190		90-130	90-130	90–130	90–130	110-150	130–170	130-170	110-150	150-190	150190	70-110	90–130	130–170	130–170	150–190	150–190	150-190	150 - 190	150-190	150-190	90–130
Substanz		$b_{1-(1)}$	$\left[-(1), \cdots, \cdots, \cdots, \cdots \right]$	1-(2)	vlpropanol-(1)	vlpropanol-(2)	ol-(1)	ylbutanol-(1)	ersäureester von:	lol	l	tol-(1)	tol-(2)	1-(1)	1-(2)	ylpropanol-(1)	ylpropanol-(2)	ol-(1)	ylbutanol-(1)	entan	exan	eptan	ctan	onan	ecan	ndecan	odecan	ecalin	alin	lcyclopentan

Volumen XLII, Fasciculus VII (1959) – No. 292

2715

(Fortsetzung)	
Retentionsindices	

Substanz	Temperatur- Bereich	70	130	190	$10 \frac{\partial I^{A}}{\partial T}$	Temperatur- Bereich	70	130	190	$10 \frac{\partial I^P}{\partial T}$	ΔI_{130}	$\frac{\partial AI}{\partial T}$
Methylcyclohexan	110-150	738	760		+ 3,7	110-150	762	788		+ 4,2	27	+ 0,5
Methylcycloheptan	150-190 170-210		908 1019	938 1052	+ 5,0 + 5,0	150-190 150-190		939 1054	975 1091	+ 5,6 + 6,2	32	+ 0,6
Cyclopenten	70-110	565	581		+2,7	70-110	642	659		+ 2,9	78	+ 0,2
Cyclohexen	90–130	695	714		+ 3,2	90-130	764	787		+ 3,8	73	+ 0,6
Cyclohepten	150-190		840	864	+ 4,1	150–190		918	942	+ 4,0	78	-0,1
Cycloocten	150–190		945	985	+ 6,6	150-190		1026	1059	+ 5,6	80	-1,0
1-Methylcyclopenten-(1)	90–130		675	683	+1,4	90–130		740	753	+ 2,1	99	+ 0,7
1-Methylcyclohexen-(1)	110-150		807	816	+1,5	110-150		866	887	+ 3,5	59	+2,0
1-Methylcyclohepten-(1)	150-190		606	930	+ 3,5	150-190		976	1003	+4,5	<u>6</u> 6	+1,0
1-Methylcycloocten-(1)	170-210		1023	1048	+4,1	150-190		1092	1121	+ 5,0	69	+ 0,9
Chlorcyclopentan	130–170		804	827	+ 3,9	130-170		967	995	+4,7	164	+ 0,7
Chlorcyclohexan	150-190		922	952	+ 5,0	130–170		1085	1119	+ 5,7	162	- 0,7
Chlorcycloheptan	170-210		1069	1106	+6,2	150-190		1237	1278	+ 6,9 +	168	- 0,7
Chlorcyclooctan	170–210		1197	1237	+ 6,3	170–210		1371	1411	+ 6,8	170	- 0,6
Bromcyclopentan	130-170		905	933	+ 4,7	130-170		1075	1105	+ 6,1	170	+1,5
Bromcyclohexan	150-190		1023	1056	+ 5,5	150-190		1189	1231	+ 7,0	166	+1,5
Bromcycloheptan	170–210		1157	1203	+ 7,7	170-210		1333	1386	+ 8,9	176	+1,2
Bromcyclooctan	170-210		1258	1304	+ 7,7 +	170-210		1432	1486	+ 9,1	174	+1,4
Cyclopentanon	110-150		766	785	+ 3,1	150-190		1072	1101	+4,8	306	+ 1,7
Cyclohexanon	130-170		886	606	+ 3,9	150-190		1171	1206	+ 5,9	285	+1,0
Cycloheptanon	150-190		1009	1038	+ 4,9	170-210		1299	1343	+ 7,3	291	+2,4
Cyclooctanon	150-190		1115	1158	+ 7,1	170-210		1405	1455	+ 8,3	290	+ 1,2
2-Methylcyclohexanon	130-170		937	971	+ 5,6	170-210		1208	1246	+ 6,4	271	+ 0,8
3-Methylcyclohexanon	130-170		943	965	+ 3,7	170-210		1205	1244	+ 6,5	263	+ 2,8
4-Methylcyclohexanon	130-170		950	973	+ 3,9	170-210		1231	1278	+ 7,9	281	+3,9
Cyclopentanol	110-150	_	768	773	+1,0	170–210		1135	1135	+ 0,1	367	- 1,0
Cyclohexanol	130-170		880	868	+3,0	170-210		1242	1247	+ 0,8	362	- 2,1
Cycloheptanol	150-190		1022	1052	+ 5,0	170-210		1385	1403	+ 3,1	363	- 1,8
Cyclooctanol	150-190	-	1155	1189	+ 5,7	170-210		1520	1548	+ 4,7	365	- 1,0

2716

Substanz	Temperatur- Bereich	70	130	190	$10 \frac{\partial I^{A}}{\partial T}$	Temperatur- Bereich	70	130	190	$10 \frac{\partial I^P}{\partial T}$	ΔI_{130}	$10 \frac{\partial \Delta I}{\partial T}$
1-Methylcyclopentanol-(1).	130-170		770	782	+2,0	130-170		1091	1096	+ 0,9	321	-1,1
1-Methylcyclohexanol-(1)	150-190		882	906	+ 3,9	150-190		1192	1203	+1,8	311	-2,1
1-Methylcycloheptanol-(1)	170-210		1009	1036	+ 4,5	150-190		1335	1359	+4,2	325	- 0,3
1-Methylcyclooctanol-(1)	170–210		1121	1156	+ 5,9	170-210		1445	1474	+4,8	325	-1,1
Nitrocyclohexan	170-210		1083	1119	+ 5,9	170-210	_	1385	1466	+ 13,6	302	+ 7,7 +
Tetrahydro-furan	70-110	618	631		+2,1	90-130	780	800		+ 3,2	169	+ 1,1
Tetrahydro-pyran	90–130	697	714		+ 2,8	110-150		870	897	+ 4,3	156	+ 1,5
Benzol	110-150		691		+ 3,4	130-170		862	884	+ 3,6	172	+ 0,3
Naphtalin	170–210		1263	1292	+4,8	170 - 210		1531	1585	+ 9,1	268	+ 4,3
Azulen	190 - 210		1399	1419	+ 3,2	190-210		1707	1763	+ 9,4	308	+6,1
Toluol	130–170		798	816	+ 3,0	130-170		963	984	+ 3,4	165	+ 0,5
Äthylbenzol	130-170		893	913	+ 3,3	130-170		1053	1076	+ 3,8	160	+ 0,5
Propylbenzol	130-170		978	866	+ 3,3	130-170		1136	1161	+ 4,2	157	6'0+
o-Xylol	150-190		930	953	+ 3,9	150-190		1090	1128	+6,2	160	+2,4
m-Xylol	150-190		904	924	+ 3,5	150-190		1056	1086	+ 5,1	152	+ 1,7
p-Xylol	150-190		904	923	+ 3,2	150-190		1051	1084	+ 5,5	147	+2,3
Isopropylbenzol	150-190	_	947	996	+ 3,2	130-170		1104	1125	+ 3,5	156	+ 0,3
p-Cymol	150-190		1051	1072	+ 3,5	150-190		1199	1223	+4,0	148	+ 0,5
Styrol	150–190		929	949	+3,4	150-190		1128	1169	+ 7,0	199	+3,6
Fluorbenzol	110-170		681		+ 3,0	130-170		879		+ 3,8	198	+ 0,8
Chlorbenzol	150-190		885	914	+ 4,7	150-190		1099	1134	+ 5,8	214	+1,1
Brombenzol	150-190		982	1019	+6,1	150-190		1210	1257	6'1+	227	+1,8
Jodbenzol	150190		1104	1152	+ 7,9	130-170		1352	1405	+ 8,9	247	+ 0,9
o-Dichlorbenzol	150-190		1076	1117	+ 6,7	150-190		1126	1375	+ 8,1	250	+1,4
m-Dichlorbenzol	150-190		1058	1097	+6,4	150-190		1275	1320	+ 7,5	217	+1,1
p-Dichlorbenzol	150–190		1060	1096	+ 6,0	150-190		1288	1335	+ 2,9	228	+1,9
o-Chlortoluol	150-190		<u> 8</u>	1024	+ 4,8	150-190		1194	1231	+ 6,2	198	+1,5
m-Chlortoluol	150-190		995	1025	+ 4,9	150-190		1205	1241	+ 6,0	200	+1,1
p-Chlortoluol	150-190		966	1026	+ 5,0	061-061		1206	1241	- 6'c +	210	+0°+

Retentionsindices (Fortsetzung)

Volumen xLII, Fasciculus VII (1959) - No. 292

(Fortsetzung)
Retentionsindices

$\frac{10}{\partial T}\frac{\partial AI}{\partial T}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0,3
ΔI_{130}	215 215 227 227 227 227 227 227 227 227 227 22	464
$10 \frac{\partial I^P}{\partial T}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+3,7
190	1352 1352 1364 1365 1365 1535 1536 1536 1538 1538 1538 1538 1556 1556 1556 1556 1556 1556 1556 155	1562
130	1306 1319 1321 1321 1529 1646 1646 1246 1499 1547 1547 1547 1558 1558 1553 1553 1553 1553 1553 1553	1540
70		
Temperatur- Bereich	$\begin{array}{c} 150-190\\ 150-190\\ 150-190\\ 170-210\\ 170-210\\ 150-190\\ 150-190\\ 150-190\\ 170-210\\ 170-20\\ 1$	170-210
$10 \frac{\partial I^{A}}{\partial T}$	++++++++++++++++++++++++++++++++++++	+3,9
190	1129 1129 1132 1132 1127 1257 993 1127 1131 1131 1127 1128 1128 1128 1128 1128 1128 112	1099
130	1091 1095 1095 1125 1125 1125 1125 1125 1125 965 930 930 945 1125 955 930 946 1125 955 965 966 9105 965 965 966 970 986 970	1076
70		
Temperatur- Bereich	$\begin{array}{c} 150-190\\ 150-190\\ 150-190\\ 170-210\\ 170-210\\ 170-210\\ 150-190\\ 150-190\\ 170-210\\ 170-20\\ 170$	150-190
Substanz	o-Bromtoluol	2-Phenylpropanol-(2)

2718

HELVETICA CHIMICA ACTA

			R =					Methylengruppe an R in Stellung		
Тур	х	Verbindungs- klassen	H Grund- werte	C ₁	C ₂	C3	C ₄ oder höher	α	β	γ
	-0-	Äther	(+ 133) -0,3	(0) (0)	- 20 - 0,1	- 25 - 0,2	- 28 - 0,2	- 20 - 0,1	- 5 - 0,1	-3 0
R ₁ X	O 	Ester	+ 283 - 0,5	- 18 + 0,7	36 + 0,9	-45 +1,0	- 52 + 1,1	-18 + 0,2	-9 +0,1	- 7 + 0,1
	O _C_	Aldehyde und Ketone	+ 244 + 2,0	+ 6 - 0,2	- 9 - 0,6	17 0,4	- 20 + 0 , 2	-15 -0,4	- 8 + 0,2	- 3 + 0,6
	-Cl	Chloride	+ 174 + 1.2	-21 -0.1	-33 -0.5	- 39 - 0.7	44 0.8	-12 - 0.4	-6	-5 -01
$\mathbf{R_1}$	–Br	Bromide	+184 +3.2	-21 -0.9	- 33 - 1.1	-39 -1.2	- 44 - 1.4	-12 - 0.2	-6 -0.1	- 5 - 0.2
Ŕ ₃	–OH	Alkohole	+ 453 - 0,8	- 57 0,0	76 0,4	- 80 - 0,9	82 1,2	-19 -0,4	- 4 - 0,5	-2 -0,3
$\begin{array}{c c} R_1 & R_4 \\ \hline \\ R_2 & R_3 \end{array}$	⊂	Ungesättig- te Verbin- dungen	+ 64 + 2,5	- 8 - 0,6	- 15 - 0,7	- 17 - 0,9	-17 -0,9	- 7 - 0,1	-2 -0,2	0 0

211. Inkremente für ΔI_{130} -Werte aliphatischer Verbindungen

In der Tab. 211 sind Inkremente für Nitrile und Nitroverbindungen nicht aufgeführt. Im Prinzip würden sich diese gemäss dem Gedankengang, welcher im Abschnitt 212 dargelegt wird, aus den experimentellen Daten der normalen homologen Reihe ermitteln lassen, wobei man folgende Werte erhält:

Nitroverbindungen: Grundwert: +474; C₁: -78; C₂: -102; C₃: -122; C₄: -137.

Nitrile: Grundwert: +480; C₁: -78; C₂: -102; C₃: -122; C₄: -137.

Diese Inkremente konnten jedoch nicht an weiterem experimentellem Material sichergestellt werden.

212. Definitionen und Regeln

(1) ΔI -Wert einer Verbindung: Die einzelnen Haftzonen einer Verbindung sind voneinander unabhängig; jede der Zonen liefert zum ΔI -Wert einen additiven Bei-

trag. Die in Tab. 211 aufgeführten Haftzonen sind polare Bindungen (C-Cl, C-Br, C-OH usw.) sowie die Doppelbindung.

Beispiel: Die Verbindung Nerol (I) enthält drei Haftzonen. Der Δ I-Wert des Nerols ist somit gegeben durch: $\Delta I_{130} = (Beitrag der Zone 1) + (Beitrag der Zone 2) + (Beitrag der Zone 3).$

(2) Beitrag einzelner Haftzonen: Der einer Haftzone zukommende Beitrag wird durch einen für die Zone charakteristischen Grundwert und durch additive Korrekturen, welche die intramolekulare Umgebung der Haftzone berücksichtigen, definiert: (Beitrag der Zone) = (Grundwert) + (Korrekturen). Die Umgebung der Zone wird durch die Art der an ihr hängenden Substituenten bedingt. Sind alle Substituenten Wasserstoffatome, so ist der Δ I-Wert der entsprechenden Verbindung gleich dem Grundwert der Haftzone (z. B. CH_a-Cl, CH_a-Br, CH_a-OH, H_aC=CH_a).

In einigen Fällen wird allerdings der Grundwert einer hypothetischen Verbindung zugeschrieben. So entspricht z. B. der Grundwert der Estergruppe einem fiktiven ΔI_{130} -Wert, der formell für eine Ameisensäure gilt; er ist aber ausschliesslich als Haftzoneninkrement in einem Ester zu verwenden ¹³). Bei den Äthern ist der Grundwert dem Dimethyläther zugeordnet. Mit Hilfe dieses Grundwertes ist jedoch die Berechnung der Äther derjenigen der anderen Substanzklassen analog, d. h. die höheren Äther müssen nicht als substituierte Dimethyläther, sondern sozusagen als substituiertes Wasser berechnet werden (vgl. Beispiel **213** (**B**)).

(3) Korrekturen: Jeder Ersatz eines Wasserstoffatoms einer Haftzone durch einen Substituenten R verändert den Beitrag dieser Zone zu ΔI_{130} . Die Grösse dieser substitutionsbedingten Korrektur hängt für jeden Substituenten R von seiner «Ausdehnung» ab, wobei diese Ausdehnung auf folgende Art beschrieben wird:

a) Unter den in Tab. **211** angegebenen Substituenten $R = C_1$, C_2 , C_3 und C_4 sind die *nicht-verzweigten gesättigten Alkylgruppen:* Methyl, Äthyl, n-Propyl und n-Butyl zu verstehen.

b) Bei einem verzweigten Alkylsubstituenten (vgl. Formel IV) werden von der Haftzone ausgehend zu jeder Methylgruppe hin Linien gezogen (vgl. V) und die Zahl i der entlang jeder dieser Linien liegenden Kohlenstoffatome bei der Haftzone beginnend abgezählt. Auf diese Weise entstehen zwei- oder mehrfache Linienzüge, so dass die Kohlenstoffatome, die auf diesen Doppel- bzw. Mehrfachlinien liegen, doppelt bzw.

¹³) Im Rahmen des weiter unten skizzierten Modells würden die so erhaltenen ⊿I-Werte hypothetischen Säuren zukommen, die mit der stationären Phase keine Wasserstoffbrücken bilden.

mehrfach gezählt werden. Ihr überzähliger Beitrag zur Korrektur muss wieder in Abzug gebracht werden, was nach folgendem Schema zu geschehen hat: zunächst sind die Inkremente C_i (die den Zahlen i entsprechen) zusammenzuzählen, und dann von der erhaltenen Summe die Inkremente C_j (die den Zahlen j der mehrfach gezählten Züge entsprechen) in Abzug zu bringen.

In der letzten Spalte der Tab. **211** sind einfachheitshalber Inkremente für α -, β - und γ -ständige Methylgruppen aufgeführt. Diese sind nach oben zitierter Methode wie folgt berechnet worden:

Zusätzliches Inkrement für eine Methylgruppe an R in Stellung: α , β , γ . Berechnet als Unterschied zwischen: C_2-C_1 , C_3-C_2 , C_4-C_3 .

Somit beträgt z. B. für die Haftzone C-OH der Alkohole das Inkrement der Isopropyl-Gruppe (α -Methyl-äthyl-Gruppe): -76-19 = -95. Wird dieser Beitrag nach der weiter oben zitierten Methode gerechnet, so erhalten wir für das gleiche Inkrement: (Korrektur für Isopropylgruppe) = $2C_2 - C_1 = -152 + 57 = -95$.

c) Bei den Berechnungen, die eine bestimmte Haftzone einer Molekel betreffen, werden die *übrigen in der Molekel eventuell vorkommenden Haftzonen* formell durch gesättigte Substituenten ähnlicher Grösse ersetzt, so z. B.: -CHO, -OH, -CH₂Cl, -CH₂Br durch eine Methylgruppe, -CO-CH₃, -O-CH₃ durch eine Äthylgruppe, -CO-O-CH₃ durch eine Propylgruppe usw.

(4) Temperaturgang: Aus den Daten der Tab. 211 werden die ΔI_{130} -Werte (ΔI -Wert bei 130°) erhalten. Um diese Werte auf andere Temperaturen umrechnen zu können, ist unter den Inkrementen der Tab. 211 ihr Temperaturgang für 10° (kursiv gedruckt) angegeben. Addiert man die den verwendeten Inkrementen zugeordneten Temperaturgänge analog wie für die ersteren eingehend besprochen wurde, so erhält man die Änderung des ΔI -Wertes für 10° Temperaturanstieg.

213. Beispiele

(A) Die schon weiter oben als Beispiel angeführte Verbindung Nerol besitzt drei Haftzonen (s. Formeln VI, VII, VIII u. I, S. 2722). Zur Berechnung der Beiträge der einzelnen Zonen werden vorerst die andern beiden, wie weiter oben erläutert, durch Alkylgruppen «ähnlicher Grösse» ersetzt und die so erhaltenen Teilgrössen zum ΔI_{130} -Wert vereinigt. Die analoge Berechnung wird auch für die (kursiv angegebenen) Temperaturgänge ausgeführt. Dieses Verfahren ist formell im nachfolgenden Schema auf Seite 2722 oben dargestellt.

Experimentell wurde für Nerol ein ΔI_{130} -Wert von **419** (-1,9) gefunden. Da die Berechnung die Möglichkeit eines Unterschieds zwischen *cis*- und *trans*-Isomeren nicht berücksichtigt, wird für das *trans*-isomere Geraniol der gleiche Wert für ΔI_{130} und dessen Temperaturgang gefunden. Der experimentelle Wert beträgt für Geraniol: $\Delta I_{130} = 434 (-1,5)$.

(B) Es wurde erwähnt, dass die höheren Äther als «substituiertes Wasser» berechnet werden müssen, obschon der Grundwert dieser Gruppe dem ΔI_{130} -Wert des Dimethyläthers entspricht. Als illustrierendes Beispiel sei der ΔI_{130} -Wert des Diisopropyläthers (IX) berechnet. Experimentell wurde für diese Verbindung ein ΔI_{130} -Wert von **63** (-0,8) gefunden.

(C) Aus den leichtflüchtigen Teilen des Lavandin-Öls wurde mit Hilfe der präparativen Gas-Chromatographie eine kleine Menge (etwa 20 mg) einer Substanz unbekannter Struktur isoliert¹⁴). Das Infrarotspektrum deutete auf das Vorhandensein einer sekundären oder tertiären Hydroxyl-

¹⁴) P. A. STADLER, Helv., im Druck; P. A. STADLER, A. ESCHENMOSER, E. SUNDT, M. WIN-TER & M. STOLL, Experientia, im Druck.

gruppe sowie einer Vinyl-Doppelbindung hin. Anhand der gleichen Substanzprobe, die zur Aufnahme des IR.-Spektrums diente, wurden die Retentionsindices der Verbindung bestimmt: $I_{13}^{A} = 564$ und $I_{130}^{P} = 880$. $\varDelta I_{130} = 316$. Der Retentionsindex an der apolaren Kolonne entspricht einem Siedepunkt von etwa 106° (vgl. Teil 1, Beziehung (8c)), der ungefähr demjenigen des Butanols-(2) (Sdp.: 100°) oder des 2-Methylbutanols-(2) (Sdp.: 102°) entspricht. Auf Grund dieser Resultate und der Tatsache, dass das UV.-Spektrum praktisch keine Absorption bei Wellenlängen über 210 mµ aufwies, wurden folgende Strukturformeln zur Diskussion gestellt:

Der experimentell gefundene ΛI_{130} -Wert von **316** I-Einheiten deutete darauf hin, dass der Verbindung eher die Struktur XI zukommt. Das IR.-Spektrum einer Probe des synthetisch dargestellten Alkohols XI sowie der Misch-Schmelzpunkt der Dinitrobenzoate des natürlichen und des synthetischen Produktes bestätigen eindeutig die Richtigkeit dieser Annahme. Die gas-chromatographischen Daten des synthetischen Alkohols XI waren:

$$I_{130}^{A} = 576, I_{130}^{P} = 892$$
. $AI_{130} = 316^{15}$

Die Substanz siedet bei 96°.

22. Alicyclische Verbindungen

221. Tabelle der Inkremente für ΔI_{130} -Werte alicyclischer Verbindungen. Die Inkremente dieser Tabelle wurden nicht für höhere als dreifach-substituierte Ringe

¹⁶) Die Retentionsindices des natürlichen Alkohols wurden an Hand stark verdünnter Lösungen bestimmt. Erfahrungsgemäss erhält man in solchen Fällen etwas zu niedrige Retentionsindices, weil wahrscheinlich das gasförmige Lösungsmittel in der Kolonne die Rolle des Trägergases übernimmt, so dass die Substanz früher als erwartet aus der Kolonne gespült wird.

geprüft. Versuchsweise können zwar solche Verbindungen berechnet werden, doch ist zu berücksichtigen, dass der Beitrag einer so stark substituierten Haftzone negativ ausfallen kann. Da aber stark verzweigte Kohlenwasserstoffe einen Δ I-Wert von Null aufweisen, muss statt des eventuell erhaltenen negativen Wertes Null für den Beitrag der Haftzone gesetzt werden.

		Methylgruppe an R in Stellung				
Verbindungsklasse: Derivate des	H Grund- werte	C ₁ C ₂	C ₃ oder höher	α	β	7
Cyclopentans	+ 36 + 1,2)				
Cyclohexans	+ 31 + 1,2	-6 -11	- 13	- 5	- 4	0
Cycloheptans	+ 34 + 1,2	-0,7 -0,2	7 – 0,7			
Cyclooctans	+ 36 + 1,2					

221. Inkremente für ΛI_{130} -Werte alicyclischer Verbindungen

222. Definitionen und Regeln. Die unter 212 aufgeführten Definitionen und Regeln sind auch für die Berechnung vom ΔI_{130} eines als Haftzone betrachteten Ringes gültig. Zusätzlich muss aber der Ring als Umgebung einer eventuell vorhandenen andern Haftzone definiert werden, weil in der Regel (3) zur Berechnung der Korrekturen die Möglichkeit, dass ein Substituent R einer Haftzone ein Ring ist, nicht in Betracht gezogen worden ist.

(5) Regel (3)c (vgl. 212) besagt, dass bei den Berechnungen, die eine bestimmte Haftzone betreffen, die übrigen Haftzonen formell durch äquivalente Alkylgruppen ersetzt werden müssen.

Für den *Ring als Umgebung* wird das Äquivalent wie folgt postuliert: Eine Haftzone kann entweder z. T. im Ring enthalten sein (vgl. die Ketogruppe bei XVII) oder mit ihm durch eine Bindung oder eine Alkylkette verknüpft sein (vgl. die Doppelbindung bei XIV). Die Ringglieder links und rechts der Substitutionsstelle des Ringes (welche in den Formeln XIV und XVII mit α bezeichnet sind), gemeinsam mit evtl. an ihnen hängenden weiteren Substituenten, werden nun zur Berechnung der Haftzone als «Substituenten ähnlicher Grösse» betrachtet (vgl. XII und XV)¹⁶).

223. Beispiele

(D) Für die Berechnung der Beiträge der einzelnen Haftzonen des Monoterpen-Kohlenwasserstoffs Limonen können mit Hilfe der Regel (3) und der Zusatzregel (5) drei Äquivalentformeln aufgeschrieben werden (XVIII, XIX und XX). Die diesen Formeln entsprechenden Beiträge ergeben den ΔI_{130} -Wert des Limonens (XX1).

Experimentell wurde für Limonen ein ΔI_{130} -Wert von **86** (+2,0) I-Einheiten gefunden ($I_{130}^{A} = 1058$, $I_{130}^{P} = 1144$).

(E) Aus einer Destillationsfraktion eines ätherischen Öles wurde eine Substanz isoliert¹⁷), deren Infrarotspektrum auf das Vorhandensein einer tertiären (evtl. sekundären) Hydroxylgruppe sowie einer dreifach substituierten Doppelbindung hindeutete. Die Elementaranalyse entsprach der Formel $C_{10}H_{18}O$, das UV.-Spektrum zeigte praktisch keine Absorption bei Wellenlängen über 210 mµ. Ähnlichkeiten des 1R.-Spektrums mit dem des α -Terpineols liessen vermuten, dass der

¹⁶) Die weiteren Methylengruppen des Ringes werden durch den Ringschluss in eine solche sterische Lage gebracht, dass sie die Haftzone nicht «abschirmen» können.

¹⁷⁾ Privatmitteilung von Dr. C. F. SEIDEL.

vorliegende Alkohol ein Isomeres dieser Substanz sei. Auf Grund dieser Resultate wurden die folgenden Strukturformeln zur Diskussion gestellt: α -Terpineol (XXII), Terpinen-4-ol (XXIII), Piperitol (XXIV) und Terpinen-1-ol (XXV).

Die gas-chromatographischen Daten des natürlichen Alkohols ($I_{190}^A = 1219$, $I_{190}^P = 1489$. $\Box I_{190} = 270$) stehen dem berechneten ΔI_{190} -Wert des Terpinen-4-ols am nächsten. Synthetisch hergestelltes Terpinen-4-ol erwics sich als mit dem natürlichen Alkohol identisch.

23. Aromatische Verbindungen

231. Tabelle der Inkremente für ΔI_{130} -Werte aromatischer Verbindungen. Der aromatische Kern stellt, wie auch ein alicyclischer Ring, eine Haftzone dar. Die Inkremente der Tab. 231 wurden (wie bereits bei den Ringen) nicht für höhere als dreifach-substituierte Verbindungen geprüft.

	$\mathbf{R} =$				Methylgruppe an R in		
\mathbb{R}_1	H Grund- wert	C ₁	C ₂	C ₃ oder höher	x	β	2'
R ₃	+ 172 + 0,3		-13 +0,4	-15 +0,4	3 + 0,1	- 2 + 0,2	0 0,0

231. Inkremente für ∆I₁₃₀-Werte aromatischer Verbindungen

Die Berechnung der ΔI_{130} -Werte von Verbindungen, die ausser dem aromatischen Kern weitere Haftzonen enthalten, ergibt meistens grössere Unterschiede zwischen dem berechneten und dem experimentellen Wert, die aber innerhalb einer Substanzklasse einen systematischen Gang aufweisen, so dass sie im Prinzip um diese Werte korrigiert werden können. Die Grösse dieser Korrektur hängt davon ab, wie weit die zusätzliche Haftzone vom aromatischen Kern entfernt ist. In der Tab. 231b sind solche Korrekturen zusammengestellt.

232. Regeln und Definitionen. Die Umgebung des aromatischen Kerns ist wiederum durch die Regel (3) definiert. Tritt der aromatische Kern selbst als Substituent auf, so wird die Umgebung der betreffenden Zone gemäss Regel (5) (analog wie bei den alicyclischen Ringen) beschrieben.

		Entfernung der Haftzone X vom aromatischen Kern					
X	Verbindungs- klasse		x	-X	C-C-C-X		
-O-	Äther	+ 19	<u>-</u>	-	_		
	Aldehy de un d Ketone	-11 - 0.5	+ 22 - 0,4	+ 24 - 1,0	-		
-C1	Chloride	-86 -0.2		-			
Br	Bromide	-87 + 0.1	*)	+12 + 2.0			
-OH	Alkohole	×	+ 57 - 0,2	-5 + 0,9	-17 + 2,0		
C=C	Ungesättigte Substituenten	0			···		
*) Zerset	*) Zersetzung						

231b. Korrekturen für weitere Haftzonen neben dem aromatischen Kern

(6) Befindet sich in einer Molekel ausser dem aromatischen Kern eine andere Haftzone, so muss nach den Angaben der Tab. 231 b eine zusätzliche Korrektur dem Endresultat zugezählt werden (vgl. XXVI bis XXVIII).

233. Beispiele

(F) Der als Beispiel angeführte aromatische Alkohol XXVIII wird zuerst in Teilformeln zerlegt, und die diesen Formeln entsprechenden Beiträge werden wie bis hieher berechnet. Die Haftzone: Hydroxylgruppe befindet sich in Stellung α zum aromatischen Kern. Für eine solche Stellung der Haftzone wird der Tab. 231 b eine Korrektur von 57 entnommen.

Experimentell wurde ein AI_{130} -Wert von **464** gefunden.

3. Diskussion

Die partiellen molaren thermodynamischen Funktionen der Komponenten von Gemischen kondensierter Phasen werden zweckmässigerweise relativ zu solchen Funktionen angegeben, die man für die Komponenten in einem hypothetischen Standardzustand erwarten würde. Die Abweichungen der reellen partiellen molaren Funktionen von den Referenzfunktionen werden definitionsgemäss in Aktivitätskoeffizienten festgelegt. Die willkürliche Wahl des Standardzustandes und die dadurch bedingte Definition des Aktivitätskoeffizienten richtet sich nach der speziellen Problemstellung.

Fig. 1 illustriert die Definition der Aktivitätskoeffizienten¹⁸). Der Referenzzustand für den Aktivitätskoeffizienten f ist die hypothetische ideale Lösung, in

welcher die relativen Aktivitäten der Substanzen ihrem Molenbruch proportional sind (RAOULT'sche Lösung); f nimmt den Wert 1 an, wenn reine Substanz vorliegt. Der Aktivitätskoeffizient γ bezieht den Partialdruck¹⁹) der Substanz 1 über dem Gemisch auf den Druck xh, den man durch Extrapolation auf den Wert x mit Hilfe jener Tangente erhält, die im Punkte x = 0 an die reelle Dampfdruckkurve gelegt ist. Demzufolge ist $\gamma = 1$ für die ideal verdünnte Lösung (HENRY'sche Lösung).

Es ist offensichtlich, dass im Prinzip eine beliebige Funktion p_1^{St} als Standardfunktion Verwendung finden kann, sofern es das gegebene Problem verlangt. Für die Diskussion der Δ I-Werte hat sich die im nächsten Absatz gegebene Definition als zweckmässig erwiesen:

¹⁸) Vgl. E. A. GUGGENHEIM, Thermodynamics, North Holland Publ. Corp., Amsterdam 1950. Die in der vorliegenden Publikation verwendete Symbolik stützt sich weitgehend auf die von E. A. GUGGENHEIM.

¹⁹) Einfachheitshalber wird in diesem Teil immer angenommen, dass die Gasphase sich durch die «idealen» Gasgesetze beschreiben lässt. Für den Grenzfall $x \rightarrow 0$... $p \rightarrow 0$ ist dies weitgehend erfüllt. Strenggenommen sollte man immer die Flüchtigkeiten an Stelle des Druckes verwenden.

In Fig. 1 sind zwei Dampfdruckkurven graphisch dargestellt. Die volle Linie ist die Partialdampfdruckkurve der Substanz 1 über dem Gemisch der Substanzen 1 und X, während die gestrichelte Linie den Partialdampfdruck der in einem als Standard erwählten, «apolaren», organischen Lösungsmittel gelösten Substanz 1 darstellt. Wir definieren den Aktivitätskoeffizienten α so, dass für das Lösungsmittel X: $p_1/x_1 = h (1 | St) \alpha$ ist. Der Aktivitätskoeffizient α nimmt in dem «apolaren» Standard-Lösungsmittel bei idealer Verdünnung den Wert 1 an. Als Standard-Lösungsmittel werden gesättigte Paraffinkohlenwasserstoffe vorgeschlagen, da diese der Bedingung der «Apolarität» am nächsten kommen, obschon auch sie geringe lokale Felder erzeugen.

31. Modell des gelösten Zustandes.

a) Die Substanzen bilden mit der stationären Phase eine reguläre Lösung²⁰) nichtidealer Lösungsentropie.

b) Die Lösungsentropie weicht von der einer idealen Lösung wegen der Unterschiede in den molaren Volumina der gelösten Substanz und der stationären Phase ab²¹).

c) In einem «apolaren» Lösungsmittel wirken auf die gelösten Molekeln nur Dispersionskräfte²²), und eine «apolare» Molekel wird in jedem Lösungsmittel nur durch solche Kräfte zurückgehalten.

d) In einem nicht-apolaren Lösungsmittel wirken auf die gelösten Molekeln zusätzliche Kräfte, die wie folgt eingeteilt werden können:

- 1. Durch polare Eigenschaften bedingte Kräfte:
- α) Anziehung zwischen den permanenten Dipolen²³) (und höheren Polen) der gelösten Molekeln einerseits und denjenigen der stationären Phase anderseits.
- β) Anziehung der polarisierbaren Zonen, in welchen infolge Induktion eine Ladungsverschiebung hervorgerufen wurde²⁴).
- 2. Chemische Bindung im weiteren Sinne: Wasserstoffbrücken, Komplexbildung.
- 3. Sterische Effekte, welche die unter 1. und 2. beschriebenen Kräfte beeinflussen.

Die chromatographierte Substanz liegt in der stationären Phase in so kleinen Konzentrationen vor, dass die Verhältnisse denen der idealen Verdünnung nahekommen. Die Bedingung für Gleichgewicht zwischen der Gasphase und der kondensierten Phase ist, dass das chemische Potential jeder Komponente in beiden Phasen gleich sei:

$$\mu^{i} = \mu^{\dagger, i} + RT \ln x = \mu^{G} = \mu^{\dagger} + RT \ln p , \qquad (3)$$

²⁴) P. DEBYE, Physik. Z. 22, 302 (1921).

²⁰) J. H. HILDEBRAND, J. Amer. chem. Soc. **51**, 66 (1929). Vgl. auch J. H. HILDEBRAND & R. L. SCOTT, The Solubility of Nonelectrolytes, Reinhold Publ. Corp., New York 1950.

²¹) P. J. FLORY, J. chem. Physics **9**, 660 (1941); **10**, 51 (1942). Die Formel von FLORY liefert die Mischentropie zweier chemisch äbnlicher Substanzen verschiedenen molaren Volumens, die eine ideale Lösung bilden würden, wenn die molaren Volumina die gleichen wären. Im Prinzip sollte der gleiche Anteil an Mischentropie bei chemisch verschiedenartigen Nicht-Elektrolyten auch auftreten.

²²) R. EISENSCHNITZ & F. LONDON, Z. physik. Chem. **B 11**, 222 (1930); Trans. Farad. Soc. **33**, 8 (1937). Die Rechnungen zeigen, dass sogar zwischen relativ polaren Molekeln die Dispersionskräfte einen eminenten Anteil der Anziehungskräfte erfassen. Die gleiche Annahme trifft A. T. JAMES⁴).

²³) W. H. KEESOM, Physik. Z. 22, 126 (1921); 22, (1921); 23, 225 (1922).

wobei der obere Index i den ideal verdünnten, G den gasförmigen Zustand bedeutet; x ist der Molenbruch der betreffenden Komponente in der kondensierten Phase, p ihr Partialdruck über dem Gemisch (Annahme: ideales Gas). Im ideal verdünnten Zustand lässt sich das standard chemische Potential der gelösten Komponente im Rahmen des skizzierten Modells wie folgt ausdrücken²⁵):

$$\mu^{\dagger, i} = \mu^{\dagger} + \mu_{\mathrm{D}}^{i} + \mu_{\mathrm{P}}^{i} + \mu_{\varrho}^{i}. \tag{4}$$

Kombination von (3) und (4) ergibt:

$$RT \ln (p/x)^{i} = RT \ln h = \mu_{\rm D}^{i} + \mu_{\rm P}^{i} + \mu_{o}^{i}.$$
 (5)

Der Unterschied der standard chemischen Potentiale der Substanz in beiden Phasen setzt sich somit aus den Beträgen μ_D^i der Dispersionskräfte, μ_P^i der unter d) zusammengefassten polaren Kräfte und schliesslich aus μ_o^i , welchen Anteil die Unterschiede in den molaren Volumina hervorrufen, additiv zusammen.

Die relative Retention der Substanz 1 an einer stationären Phase X, bezogen auf die Substanz 2, errechnet sich im Rahmen des Kolonnenmodells von MARTIN & SYNGE²⁶) zu

$$r(1:2|X) = h(2|X)/h(1|X).$$
(6)

Die Substanzen 1 und 2 müssen Retentionsvolumina ähnlicher Grössenordnung aufweisen. Solche Substanzen weisen auch partielle molare Volumina gleicher Grössenordnung auf, so dass wir angenähert $\mu_{\varrho}^{i}(1) \approx \mu_{\varrho}^{i}(2)$ setzen. Unter dieser Voraussetzung und mit der Annahme, dass die Standard-Substanz (Substanz 2) eine «apolare» Verbindung ist, erhalten wir

$$RT \ln r (1:2|X) = \mu_{\rm D}^{\rm i}(2|X) - \mu_{\rm D}^{\rm i}(1|X) - \mu_{\rm P}^{\rm i}(1|X).$$
(7)

Wird für das gleiche Substanzpaar die analoge Grösse in einem «apolaren» Lösungsmittel ermittelt, so ergibt sich

$$RT \ln r (1:2|A) = \mu_{\rm D}^1(2|A) - \mu_{\rm D}^1(1|A).$$
(8)

Es ist leicht einzusehen, dass die Retentionsindices der Substanz 1 an den beiden stationären Phasen X und A den in den Gleichungen (7) und (8) angeführten Grössen proportional sind²⁷). Die für die stationäre Phase X charakteristische Proportionalitätskonstante ist für alle Substanzen gleich, wenn die Beträge $ln r (nP_{(z+2)}:nP_z)$ für beliebige Standard-Paare gleich sind²⁸). Die experimentellen Resultate zeigen, dass dies mit befriedigender Genauigkeit erfüllt ist, falls z über 6 liegt (Hexan-Octan).

Bilden wir nun einen Δ I-Wert unter den bereits erwähnten Annahmen, dass die Dispersionskräfte in allen Lösungsmitteln die gleichen sind und dass die Entropie

$$I = 200 \frac{RT_{\rm K} \ln r(Y:nP_z)}{RT_{\rm K} \ln r(nP_{(z+2)}:nP_z)} + 100 z$$

²⁵) Über die Additivität der intermolekularen Kräfte vgl. B. M. AXILROD & E. TELLER, J. chem. Physics **11**, 299 (1943).

²⁸) A. J. P. MARTIN & R. L. M. SYNGE, Biochem. J. 35, 1358 (1941).

²⁷) Die Definitionsgleichung des Retentionsindex (Gleichung (2)) lässt sich wie folgt schreiben:

²⁸) Vgl. auch Teil 1, Fussnote ³).

der Lösung nur infolge der Unterschiede in den Molekularvolumina von 1 und X von der einer idealen Lösung abweicht, so erhalten wir

$$\mathcal{A}I \propto \mu_{\rm p}(1|X) \approx H_{\rm p}(1|X). \tag{9}$$

Im Rahmen dieses Modells sind die Δ I-Werte dem Enthalpieanteil proportional, der jenen Wechselwirkungen zwischen der gelösten Substanz und der nicht-apolaren stationären Phase entspricht, welche in diesem Abschnitt weiter oben unter d) besprochen wurden.

Bei der Bildung des Δ I-Wertes wird eine Grösse erhalten, die im Grenzfall der idealen Verdünnung dem Aktivitätskoeffizienten α nahe steht. Beide Grössen vergleichen Molckeleigenschaften einer Verbindung in einer ideal verdünnten Lösung mit denjenigen, die sie im Standard-Zustand aufweisen würden, wobei letzterer in beiden Fällen die ideal verdünnte Lösung in einem «apolaren» Lösungsmittel ist. Würde der Logarithmus des Aktivitätskoeffizienten α für «apolare» Substanzen immer den Wert Null annehmen, so wäre er dem Δ I-Wert direkt proportional, weil durch die spezifische Definition des Retentionsindex für den Δ I-Wert diese Bedingung erzwungenermassen erfüllt ist.

Die folgende Tabelle illustriert, dass jene Verbindungen, welche wir eingangs als «apolare» Verbindungen definierten, in der Tat an beliebigen stationären Phasen verschiedenster Polarität die praktisch gleichen Retentionsindices aufweisen.

	p-Phenyl- diphenyl-	Silikon- öl	Trikresyl- phosphat	Perfluor- tributyl-	Emul- phor-O	Apiezon- L
	methan ²⁹) 78,5°	³⁰) 100°	30) 100°	amin ³⁰) 52°	³¹) 70°	³¹) 70°
2-Methylpentan	569	579	568	551	568	570
2-Methylhexan	668	662	667	655		-
2-Methylheptan	759	761	760	751	-	-
2,3-Dimethylbutan	566			-	567	570
2,2,4-Trimethylpentan.	680		-		685	690

Retentionsindices von «apolaren» Verbindungen

Andererseits ist zu erwarten, dass die Retentionsindices einer beliebigen Substanz für verschiedene «apolare» stationäre Phasen (z. B. Hexatriacontan, Paraffinöl, Squalan) ebenfalls praktisch gleich sind, so dass von solchen Lösungsmitteln die gleiche Art von Trenneffekt erwartet werden kann. Zu einem wohldefinierten Gebrauch von Λ I-Werten muss jedoch eine Gruppe der apolaren Phasen zum «apolaren» Standard erhoben werden. Als solche kann Polyäthylen verschiedener Polymerisationsgrade dienen, so dass für verschiedene Temperaturbereiche flüssige Standardphasen geeigneter Viskosität zugänglich sind.

32. Diskussion der Inkremente zur Berechnung der ΛI -Werte. Die Fig. 2 illustriert die prozentuale Abnahme des ΔI -Wertes der Verbindungen R-CH₂-X (R = H,CH₃)

²⁹) D. H. DESTY & B. H. F. WHYMAN, Analyt. Chemistry 29, 320 (1957).

³⁰) H. M. TENNEY, Analyt. Chemistry 30, 2 (1958).

³¹) Diese Arbeit.

... $(CH_2)_4$ -CH₃) in Funktion der Länge der Alkylkette, wobei der Δ I-Wert der Stammverbindung CH₃-X gleich 100% gesetzt wird. Aus dieser Darstellung ist ersichtlich, dass der Δ I-Wert einseitig substituierter Haftzonen (welche ein Dipolmoment über 1 D aufweisen) in der Reihe R = H bis Amyl bei sämtlichen Verbindungsklassen stetig abnimmt.

Das Bild der Fig. 2 deutet auf eine mögliche Interpretation der dargestellten Resultate hin, nämlich, dass die Substituenten der Haftzonen infolge ihrer Grösse die Anziehung dieser Zone durch die stationäre Phase sterisch hindern. Die abschirmende Wirkung ist dabei so gross, dass der Beitrag einer Haftzone durch einen grösseren Substituenten (R > Amyl) um etwa 20% reduziert wird. Die Regeln zur Berechnung der Beiträge zeigen, dass beim Vorliegen mehrerer Substituenten an der gleichen Haftzone diese Δ I-vermindernden Wirkungen sich addieren, so dass zwei solche Substituenten den Beitrag um 40%, deren drei ihn um 60% erniedrigen.

Die Abhängigkeit der Abnahme von R ist bei allen aufgeführten Verbindungsgruppen bis auf die Gruppe der Alkohole von gleicher Art, so dass bereits auf Grund dieser Darstellung die Vermutung nahegelegt wird, dass die Alkohole durch einen anderen Typ von Anzichungskräften in der stationären Phase zurückgehalten werden als die übrigen in Fig. 2 dargestellten Haftzonen.

Der in Fig. 2 illustrierte grosse Einfluss des Grades der Substitution auf den Betrag des \varDelta I-Wertes einer Haftzone bereitet für den Vergleich der Haftzonen gewisse Schwierigkeiten. Der \varDelta I-Wert dieser Zonen sollte in Anbetracht des gewählten Modells für den gelösten Zustand mit dem Dipolmoment der Molekeln linear wachsen, vorausgesetzt, dass die sterische Umgebung der Dipole die gleiche ist. Versuchsweise

wurden in Fig. 3 die Δ I-Werte höherer, substituierter aliphatischer Verbindungen vom Typ R-CH₂-X gegen ihr Dipolmoment aufgetragen. Als Substituent R wurde eine lange Alkylkette gewählt (R = Amyl), um die sterische Umgebung der Dipole möglichst gleichartig zu gestalten. Innerhalb der aufgeführten Verbindungsklassen besteht zwischen Δ I und D eine grobe lineare Korrelation. Die Streuung um die Korrelationslinie kann auf mehrere Ursachen zurückgeführt werden. Ausser der schon erwähnten Rolle, welche die sterische Umgebung der Haftzone spielt, dürfte z. B. der höhere Wert der Bromide im Verhältnis zu den Chloriden der höheren Polarisierbarkeit zuzuschreiben sein. Bei jenen Haftzonen, bei denen die Ladungen von mehr als zwei Kernen den Hauptanteil zum resultierenden Dipolmoment bilden (-C-C=N, -C-NO₂, -C-CO-C-, -C-CHO, -O-CO-O- usw.), könnte z. B. das Quadrupolmoment wesentlich dazu beitragen, dass sie im polaren Medium in verstärktem Masse zurückgehalten werden. Mit keinem dieser Argumente kann aber der ausserordentlich hohe Δ I-Wert der Alkohole erklärt werden.

Im Teil 1 dieser Arbeit³²) wurde versucht, durch Vergleich der Δ I-Werte der Alkohole, der Chloride bzw. der Bromide jenen Anteil der zusätzlichen Retention abzuschätzen, welcher durch die Bildung von Wasserstoffbrücken mit den Äthergruppen der stationären Phase verursacht wird. Die Daten der Fig. 2 lassen vermuten, dass durch grosse apolare Gruppen die Bildung einer Wasserstoffbrücke mit den Äthergruppen der polaren, stationären Phase weniger (ca. 18%) gehindert wird, als die Anziehung der Chlor- und Bromdipole durch dieselben (ca. 24%, wenn der Substituent R grösser als R = Amyl ist).

Auf Grund des hier Gesagten lassen sich die Kräfte, welche den Δ I-Wert der Alkohole verursachen, so aufteilen, wie es in Fig. 4 für Methanol sowie die primären, sekundären und tertiären Alkohole dargestellt ist.

Es soll an dieser Stelle bemerkt werden, dass es zur Erklärung des hohen ΔI -Wertes von Methanol und im allgemeinen von Verbindungen des Typs CH_3-X oder CH_3-X-CH_3 nicht der Annahme einer Brückenbildung zwischen den Wasserstoffatomen der Methylgruppe und der Äthergruppe der stationären Phase bedarf.

Schliesslich seien einige Bemerkungen über das allgemeine Verhalten der als Haftzonen zu betrachtenden Doppelbindungen, alicyclischen Ringe und aromatischen Kerne angeführt. Das elektrische Feld solcher Haftzonen entzieht sich im Detail den heutigen Messmethoden, so dass z.B. ihr Quadrupolmoment und ihre höheren Momente heute noch nicht gemessen werden können. In bevorzugten Richtungen

$$\Delta I_{130} = 4.0 \ \delta R_{\rm D} + 57 \ \mu c_{\rm -Hlg}$$

³²) Die Beziehung (10) des Teils 1 dieser Arbeit wurde zur Ermittlung der Fig. 4 zugrunde liegenden Daten etwas abgeändert, damit die experimentellen Resultate der Chloride und Bromide besser erfasst werden:

zeigen solche Zonen eine hohe Polarisierbarkeit, die zur Anziehung durch permanente Dipole Anlass gibt.

Berechnet man Benzol mit Hilfe der für Ringe und Doppelbindung aufgeführten Inkremente und Regeln als «Cyclohexatrien», so

erhält man einen Δ I-Wert von der richtigen Grösse (ber. 168, gef. 172).

Im Gegensatz zu dem in Fig. 2 gezeigten Zusammenhang zwischen der Grösse des Alkyl-Restes R und dem Δ I-Wert bei typisch polaren Haftzonen, ist der Δ I-vermindernde Effekt von R, bei R grösser als Propyl, für diese «apolaren» Haftzonen kaum mehr bemerkbar.

33. Retentionsdispersion und Charakterisierung stationärer Phasen. Die zur Berechnung der Δ I-Werte aufgeführten Inkremente charakterisieren auch die untersuchte stationäre Phase im Vergleich zu der als Standard gewählten apolaren Phase. Trägt man die aus den Tabellen für gleichartig substituierte funktionelle Gruppen (in Fig. 5 ist der Substituent Hexyl oder eine grössere, nicht-verzweigte apolare Gruppe) ermittelten Inkremente entlang einer Skala auf, so erhält man ein für die betreffende stationäre Phase charakteristisches Bild. Man kann sagen, dass dieses Bild die Retentionsdispersion der Polyäther-stationären Phase relativ zu der apolaren stationären Phase wiedergibt.

Die Retentionsdispersion wurde von JAMES & MARTIN³³) für ein Polyäthylenglykol (Lubrol-MO gegen Paraffinöl) qualitativ für Verbindungen vom Typ n-C₅H₁₁-X wie folgt angegeben: $-H < -O-CH_3 < -CI \approx -Br < -CO-CH_3 < -C \equiv N < -OH$. Diese Verschiebungsreihe stimmt mit den Daten der Fig. 5 überein.

Selbstverständlich wird durch diese vereinfachte Darstellung die Retentionsdispersion nur zum Teil erfasst; z. B. ist aus ihr die Wirkung der sterischen Hinderung auf ΔI nicht ersichtlich. Sie ist aber trotzdem für die Beschreibung der Haupteigenschaften von stationären Phasen nützlich.

Ist das Dispersionsbild zweier stationärer Phasen

∆I,30 4 n n R-OH ₹~C≡N 300 R -- CO--CH, R-O--CHO R-CHD R-O-CO-CH. 200 R ~Br R -01 -О-СН, 100 د م - R – H Fig. 5. Der Substituent R ist eine

Hexyl- oder längere n-Paraffinkette

gleich, so wird auch die mit ihnen erzielbare Trennung in beiden Fällen die gleiche sein, so dass es im allgemeinen für praktische Zwecke nicht notwendig ist, zwei Kolonnen mit stationären Phasen gleicher Retentionsdispersion bereit zu halten. Ist dagegen das Dispersionsbild verschieden, so werden natürlich die mit solchen stationären Phasen ausgeführten Trennungen auch verschiedenartig verlaufen.

³³) A. T. JAMES & A. J. P. MARTIN, British Medic. Bull. 10, 170 (1954).

4. Anhang

Sowohl beim präparativen als auch beim analytischen Arbeiten stellt sich oft die Frage, ob und an welcher Kolonne zwei Verbindungen voneinander getrennt werden können. Um diese Frage zu beantworten, wurde im Teil 1 eine Beziehung angegeben, die es bei Kenntnis der Arbeitstemperatur und der mittleren Plattenzahl erlaubt (mit Hilfe eines für die stationäre Phase charakteristischen, empirischen Faktors) jenen Unterschied im Retentionsindex anzugeben (δ I), unterhalb welchem bei beliebigem Mischungsverhältnis der beiden Komponenten keine getrennten Maxima zu erwarten sind. Um die Rechnung zu vereinfachen, wurde nun dieser Zusammenhang für die zwei stationären Phasen: Apiezon-L und Emulphor-O graphisch dargestellt (Fig. 6).

Ist das Retentionsvolumen der zu trennenden Substanz bei der gegebenen Arbeitstemperatur mit dem Kolonnenvolumen vergleichbar, so muss der aus Fig. 6 entnommene Unterschied δI mit dem Faktor $(1 + W_m/V_R^0)$ multipliziert werden. V_R^o ist das mittlere Retentionsvolumen der zu trennenden Substanzen; W_m bedeutet das Volumen der mobilen Phase in der Kolonne. Statt W_m kann das unkorrigierte Retentionsvolumen eines in der Kolonne nicht zurückgehaltenen Gases («gas holdup» der Kolonne) ohne Verlust an Genauigkeit verwendet werden.

Zur Darstellung der Fig. 6 wurden die folgenden, aus experimentellen Daten ermittelten Faktoren für die beiden verwendeten stationären Phasen (P und A) benützt:

	70	130	190° C		70	130	190° (2
P	1,4	1,2	1,0	A	1,5	1,3	1,1	

Die Autoren danken der Firma FIRMENICH & CIE., Genf, für die Unterstützung dieser Arbeit. Weiterhin sei Herrn E. PIEPER für seine Mitarbeit bei der Bestimmung der Retentionsindices gedankt.

SUMMARY

It is shown that the retention index of saturated paraffins is independent of the stationary phase.

If the retention index of a compound on an «apolar» stationary phase is known, the retention index of another can be estimated with the aid of additive structural increments. These increments and the necessary rules for aliphatic, alicyclic, and aromatic substances on the stationary phase, polyether (Emulphor-O), are given with respect to the standard apolar stationary phase, Apiezon-L.

We propose that the characterization of stationary phases may be based on the concept of *«Retention Dispersion»*.

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich

293. Löslichkeitsprodukte von Metall-Oxyden und -Hydroxyden

4. Mitteilung¹)

Löslichkeitsprodukt und Freie Bildungsenthalpie des Cadmiumhydroxydes

von P. Schindler

(13. X. 59)

Herrn Prof. Dr. Walter Feitknecht zum 60. Geburtstag gewidmet

A. Das Konzentrations-Löslichkeitsprodukt

1. In den vorhergehenden Arbeiten $^{1)^2}$ wurde gezeigt, dass die Löslichkeitsprodukte der Oxyde und Hydroxyde dreiwertiger Metalle mit Vorteil in Lösungen konstanter hoher Ionenstärke bestimmt werden. Dieses Ionenmedium ist überall dort angezeigt, wo sich die Hydrolyse der Metallionen geltend macht³). Bei zweiwertigen Metallen kann sie bei der Ermittlung von Ionengleichgewichten (Komplexgleichgewichte, Normalpotentiale) oft vernachlässigt werden, sofern diese Gleichgewichte in annähernd neutralen Lösungen untersucht werden. Anderseits wird bei der Bestimmung von Löslichkeitsprodukten meist in einem pH-Bereich gearbeitet, in dem die Hydroxokomplexe in merkbaren Konzentrationen auftreten. Es schien deshalb gegeben, das Löslichkeitsprodukt des Cadmiumhydroxydes ebenfalls im konstanten Ionenmedium zu bestimmen. Wir legen fest:

$$K_{s}o = [Cd^{2+}] \times [OH^{-}]^{2}$$
 $[ClO_{4}^{-}] = 3-m.$ (1)

$$K_{s}^{o} = [H^{+}]^{2} \times [Cd^{24}]^{-1}$$
 [ClO₄⁺] = 3-m. (2)

2. In einer Anzahl Lösungen S konstanter Ionenstärke ($[ClO_4^-] = 3$ -m.), die sich im Gleichgewicht mit Cd(OH)₂ befanden, wurden $[Cd^{2+}]$ und $[H^+]$ ermittelt und daraus *K_so berechnet. Der Gleichgewichtszustand wurde durch Ausfällen und durch Auflösen von Cd(OH)₂ erreicht.

¹) 3. Mitteilung: P. SCHINDLER, Helv. 42, 577 (1959).

²) G. BIEDERMANN & P. SCHINDLER, Acta chem. scand. **11**, 731 (1957); P. SCHINDLER, Chimia **11**, 164 (1957).

³) G. BIEDERMANN, Rec. Trav. chim. Pays-Bas 75, 716 (1956).